Reaction rates for a generalized reaction-diffusion master equation.
نویسندگان
چکیده
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.
منابع مشابه
Reaction rates for reaction-diffusion kinetics on unstructured meshes.
The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jump...
متن کاملContinuous-time random walks with internal dynamics and subdiffusive reaction-diffusion equations.
We formulate the generalized master equation for a class of continuous-time random walks in the presence of a prescribed deterministic evolution between successive transitions. This formulation is exemplified by means of an advection-diffusion and a jump-diffusion scheme. Based on this master equation, we also derive reaction-diffusion equations for subdiffusive chemical species, using a mean-f...
متن کاملStochastic Reaction-Diffusion Methods for Modeling Gene Expression and Spatially Distributed Chemical Kinetics
In order to model fundamental cell biological processes including the transcription, translation, and nuclear membrane transport of biological molecules within a eukaryotic cell it is necessary to be able to approximate the stochastic reaction and diffusion of a small number of molecules in the complex three dimensional geometry of a cell. For this reason a method is developed that incorporates...
متن کاملStochastic Simulation of Coupled Reaction–Diffusion Processes
actants is used to compute the time evolution of reactant concentrations. The stochastic algorithm is rigorous in the The stochastic time evolution method has been used previously to study non-linear chemical reaction processes in well-stirred hosense that it provides an exact solution to the correspondmogeneous systems. We present the first treatment of diffusion, in ing master equation for ch...
متن کاملThe breakdown of the reaction-diffusion master equation with non-elementary rates
The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well-mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2016